在说清楚iOS中的界面是如何被绘制并显示在屏幕上之前,有必要了解一下iOS中的 UIViewCALayer
在iOS当中,所有的视图都从一个叫做 UIVIew 的基类派生而来,UIView 可以处理触摸事件,可以支持基于Core Graphics绘图,可以做仿射变换(例如旋转或者缩放),或者简单的类似于滑动或者渐变的动画。

CALayer

CALayer类在概念上和UIView类似,同样也是一些被层级关系树管理的矩形块,同样也可以包含一些内容(像图片,文本或者背景色),管理子图层的位置。它们有一些方法和属性用来做动画和变换。和UIView最大的不同是CALayer不处理用户的交互。
CALayer并不清楚具体的响应链(iOS通过视图层级关系用来传送触摸事件的机制),于是它并不能够响应事件,即使它提供了一些方法来判断是否一个触点在图层的范围之内。

每一个UIview都有一个CALayer实例的图层属性,也就是所谓的backing layer,视图的职责就是创建并管理这个图层,以确保当子视图在层级关系中添加或者被移除的时候,他们关联的图层也同样对应在层级关系树当中有相同的操作。
实际上这些背后关联的图层才是真正用来在屏幕上显示和做动画,UIView仅仅是对它的一个封装,提供了一些iOS类似于处理触摸的具体功能,以及Core Animation底层方法的高级接口。

一个 Layer 的 frame 是由它的 anchorPoint, position, boundstransform 共同决定的,而一个 View 的 frame 只是简单的返回 Layer的 frame,同样 View 的 centerbounds 也是返回 Layer 的一些属性。

UIView的显示过程

动画和屏幕上组合的图层实际上被一个单独的进程管理,而不是你的应用程序。这个进程就是所谓的渲染服务。在iOS5和之前的版本是 SpringBoard 进程(同时管理着iOS的主屏)。在iOS6之后的版本中叫做BackBoard

当显示view或者运行一段动画时候,这个过程会被四个分离的阶段被打破:

  • 布局 - 这是准备你的视图/图层的层级关系,以及设置图层属性(位置,背景色,边框等等)的阶段。
  • 显示 - 这是图层的寄宿图片被绘制的阶段。绘制有可能涉及你的-drawRect:和-drawLayer:inContext:方法的调用路径。
  • 准备 - 这是Core Animation准备发送动画数据到渲染服务的阶段。这同时也是Core Animation将要执行一些别的事务例如解码动画过程中将要显示的图片的时间点。
  • 提交 - 这是最后的阶段,Core Animation打包所有图层和动画属性,然后通过IPC(内部处理通信)发送到渲染服务进行显示。

但是这些仅仅阶段仅仅发生在你的应用程序之内,在动画在屏幕上显示之前仍然有更多的工作。一旦打包的图层和动画到达渲染服务进程,他们会被反序列化来形成另一个叫做渲染树的图层树。使用这个树状结构,渲染服务对动画的每一帧做出如下工作:

  • 对所有的图层属性计算中间值,设置OpenGL几何形状(纹理化的三角形)来执行渲染
  • 在屏幕上渲染可见的三角形

所以一共有六个阶段;最后两个阶段在动画过程中不停地重复。前五个阶段都在软件层面处理(通过CPU),只有最后一个被GPU执行。而且,你真正只能控制前两个阶段:布局和显示。Core Animation框架在内部处理剩下的事务。

界面的绘制和渲染

UIView是如何显示到屏幕上的?

这件事要从RunLoop开始,RunLoop是一个60fps的回调,也就是说每16.7ms绘制一次屏幕,也就是我们需要在这个时间内完成view的缓冲区创建,view内容的绘制这些是CPU的工作;然后把缓冲区交给GPU渲染,这里包括了多个View的拼接(Compositing),纹理的渲染(Texture)等等,最后Display到屏幕上。但是如果你在16.7ms内做的事情太多,导致CPU,GPU无法在指定时间内完成指定的工作,那么就会出现卡顿现象,也就是丢帧。
60fps是Apple给出的最佳帧率,但是实际中我们如果能保证帧率可以稳定到30fps就能保证不会有卡顿的现象,60fps更多用在游戏上。所以如果你的应用能够保证33.4ms绘制一次屏幕,基本上就不会卡了。

总的来说,UIView从Draw到Render的过程有如下几步:

  • 每一个UIView都有一个layer,每一个layer都有个content,这个content指向的是一块缓存,叫做backing store。
  • UIView的绘制和渲染是两个过程,当UIView被绘制时,CPU执行drawRect,通过context将数据写入backing store。
  • 当backing store写完后,通过render server交给GPU去渲染,将backing store中的bitmap数据显示在屏幕上。

其实说到底CPU就是做绘制的操作把内容放到缓存里,GPU负责从缓存里读取数据然后渲染到屏幕上。

下图就是从CPU到GPU的过程:

通常来说,计算机系统中 CPU、GPU、显示器是以上面这种方式协同工作的。CPU 计算好显示内容提交到 GPU,GPU 渲染完成后将渲染结果放入帧缓冲区,随后视频控制器会按照 VSync 信号如下图所示,逐行读取帧缓冲区的数据,经过可能的数模转换传递给显示器显示。

在 VSync 信号到来后,系统图形服务会通过 CADisplayLink 等机制通知 App,App 主线程开始在 CPU 中计算显示内容,比如视图的创建、布局计算、图片解码、文本绘制等。随后 CPU 会将计算好的内容提交到 GPU 去,由 GPU 进行变换、合成、渲染。随后 GPU 会把渲染结果提交到帧缓冲区去,等待下一次 VSync 信号到来时显示到屏幕上。由于垂直同步的机制,如果在一个 VSync 时间内,CPU 或者 GPU 没有完成内容提交,则那一帧就会被丢弃,等待下一次机会再显示,而这时显示屏会保留之前的内容不变。这就是界面卡顿的原因。从上图中可以看到,CPU 和 GPU 不论哪个阻碍了显示流程,都会造成掉帧现象。所以开发时,也需要分别对 CPU 和 GPU 压力进行评估和优化。

离屏渲染(Offscreen Rendering And Mask)

UIKit是iOS中用来管理用户图形交互的框架,但是UIKit本身构建在Core Animation框架(Core Animation其实是一个令人误解的命名。你可能认为它只是用来做动画的,但实际上它是从一个叫做Layer Kit这么一个不怎么和动画有关的名字演变而来,所以做动画这只是Core Animation特性的冰山一角)之上,Core Animation分成了两部分OpenGL ES和Core Graphics,OpenGL ES是直接调用底层的GPU进行渲染;Core Graphics是一个基于CPU的绘制引擎;

在OpenGL中,GPU屏幕渲染有以下两种方式:

  1. On-Screen Rendering,意为当前屏幕渲染,指的是GPU的渲染操作是在当前用于显示的屏幕缓冲区中进行。
  2. Off-Screen Rendering,意为离屏渲染,指的是GPU在当前屏幕缓冲区以外新开辟一个缓冲区进行渲染操作。

如果将不在GPU的当前屏幕缓冲区中进行的渲染都称为离屏渲染,那么就还有另一种特殊的“离屏渲染”方式:CPU渲染。如果我们重写了drawRect方法,并且使用任何Core Graphics的技术进行了绘制操作,就涉及到了CPU渲染。整个渲染过程由CPU在App内同步地完成,渲染得到的bitmap最后再交由GPU用于显示。

离屏渲染的代价主要包括两方面内容:

  • 创建新的缓冲区
  • 上下文的切换,离屏渲染的整个过程,需要多次切换上下文环境:先是从当前屏幕(On-Screen)切换到离屏(Off-Screen);等到离屏渲染结束以后,将离屏缓冲区的渲染结果显示到屏幕上有需要将上下文环境从离屏切换到当前屏幕。而上下文环境的切换是要付出很大代价的。

为什么需要离屏渲染?

目的在于当使用圆角,阴影,遮罩的时候,图层属性的混合体被指定为在未预合成之前不能直接在屏幕中绘制,即当主屏的还没有绘制好的时候,所以就需要屏幕外渲染,最后当主屏已经绘制完成的时候,再将离屏的内容转移至主屏上。

离屏渲染的触发方式:

  • shouldRasterize(光栅化)
  • masks(遮罩)
  • shadows(阴影)
  • edge antialiasing(抗锯齿)
  • group opacity(不透明)

上述的一些属性设置都会产生离屏渲染的问题,大大降低GPU的渲染性能。